Controlled deposition of picoliter amounts of fluid using an ultrasonically driven micropipette

نویسندگان

  • Bradley J. Larson
  • Susan D. Gillmor
  • Max G. Lagally
چکیده

A fluid microplotter that uses ultrasonics to deposit small fluid features has been constructed. It consists of a dispenser, composed of a micropipette fastened to a piece of lead zirconate titanate piezoelectric, attached to a precision positioning system. When an electrical signal of the appropriate frequency and voltage is applied, solution in the tip of the micropipette wicks to the surface in a controlled fashion. The gentle pumping of fluid to the surface occurs when the micropipette is driven at frequencies in the range of 400–700 kHz. Spots with diameters smaller than several microns can be deposited in this manner. Continuous lines can also be produced. Several examples of deposited patterns and structures are described. This means of deposition represents a higher-resolution alternative to standard fluid deposition techniques in the fabrication of biological microarrays or polymer-based circuits. © 2004 American Institute of Physics. @DOI: 10.1063/1.1688436#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette

Fluid force microscopy combines the positional accuracy and force sensitivity of an atomic force microscope (AFM) with nanofluidics via a microchanneled cantilever. However, adequate loading and cleaning procedures for such AFM micropipettes are required for various application situations. Here, a new frontloading procedure is described for an AFM micropipette functioning as a force- and pressu...

متن کامل

Ultrasonically induced intravascular streaming and thrombus formation adjacent to a micropipette.

Ultrasonically induced microstreaming around bubbles of gas have been shown to cause damage to biological materials in vitro at clinical exposure levels. The potential for ultrasonically induced cavitation and microstreaming in mammalian systems is of interest with respect to the safe application of clinical ultrasound. Ultrasonically induced intravascular microstreaming and formation of thromb...

متن کامل

Irreversibility Analysis of MHD Buoyancy-Driven Variable Viscosity Liquid Film along an Inclined Heated Plate Convective Cooling

Analysis of intrinsic irreversibility and heat transfer in a buoyancy-driven changeable viscosity liquid along an incline heated wall with convective cooling taking into consideration the heated isothermal and isoflux wall is investigated. By Newton’s law of cooling, we assumed the free surface exchange heat with environment and fluid viscosity is exponentially dependent on temperature. Appropr...

متن کامل

An Analytical Approach to the Effect of Viscous Dissipation on Shear-Driven Flow between two parallel plates with Constant Heat Flux Boundary Conditions

An investigation has been made to analyze the effects of viscous dissipation on the heat transfer characteristics for both hydro-dynamically and thermally fully developed, laminar shear driven flow between two infinitely long parallel plates, where the upper plate is moving in an axial direction at a constant speed. On the basis of some routine assumptions made in the literature, a close form a...

متن کامل

Fluid description of collisional current filamentation instability of a weakly ionized plasma in the presence of magnetic field

In this paper, the collisional filamentation instability of an electron beam-weakly magnetized and ionized plasma has been investigated in the presence of background plasma, using the fluid description. By describing the equilibrium configuration in the presence of binary collision terms between charged and neutral particles and using the local approximation method, the dispersion relation (DR)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004